1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
use std::fmt::Display;
use crate::WrapSpannable;
use crate::firstpass::{FirstPassResult, FirstPassState, GetReqAttributes, ReqAttributes};
use wagon_lexer::productions::{Productions, EbnfType};
use super::CallingArgs;
use super::{Parse, LexerBridge, ParseResult, Tokens, Spannable, WagParseError, Ident, Rewrite, rule::Rule, rhs::Rhs, symbol::Symbol, SpannableNode, Span, ResultPeek, ResultNext};
use wagon_macros::new_unspanned;
#[derive(PartialEq, Debug, Eq, Hash, Clone)]
#[new_unspanned]
/// A chunk of an [`Rhs`].
///
/// Chunks are symbols in () with optionally an EBNF token following it.
/// If there are no (), there is only 1 symbol, which may still optionally have an EBNF token.
///
/// # Grammar
/// <code>[Chunk] -> [ChunkP] [EbnfType]?;</code>
pub struct Chunk {
/// The actual chunk part.
pub chunk: ChunkP,
/// The possible EBNF operator.
pub ebnf: Option<EbnfType>,
}
#[derive(PartialEq, Debug, Eq, Hash, Clone)]
#[new_unspanned]
/// The actual chunk part.
///
/// # Grammar
/// <span><pre>
/// [ChunkP] -> [Symbol]
/// | `"("` [Chunk]* `")"`
/// ;
/// </pre></span>
pub enum ChunkP {
/// Just a [`Symbol`].
Unit(SpannableNode<Symbol>),
/// A group of [`Chunk`]s. Enclosed with `()`.
Group(Vec<SpannableNode<Chunk>>)
}
/// A sort-of way to handle Rust enums being not fully first-class. This should be one of the [`Rule`] variants as a constructor.
type RuleConstructor = fn(String, Vec<SpannableNode<Ident>>, Vec<SpannableNode<Rhs>>) -> Rule;
impl Chunk {
/// Given a chunk and ebnf operator, rewrite the chunk such that it expresses the same language without the operator.
///
/// Adds new rules to the inserted `rules` vector which are helper rules to express the language.
fn rewrite_ebnf(
ebnf: &EbnfType, // The exact Ebnf operator
ident: String, // The identifier for the rule we are rewriting
args: Vec<SpannableNode<Ident>>, // The calling args for this rule (must be propagated)
symbol: SpannableNode<Symbol>, // The exact symbol in the rule we are rewriting (I.E. The `B` in S -> A B?)
span: &Span, // The span information for this rule
rule_func: RuleConstructor, // The constructor function for the rule we are rewriting (analytic or generative)
rules: &mut Vec<SpannableNode<Rule>> // The vector to add helper rules to.
) {
let chunks: Vec<SpannableNode<Rhs>> = match ebnf { // Assuming the rule is S -> A{op}
EbnfType::Some => { // +
let helper_ident = format!("{ident}·p"); // Requires a second helper rule to do the plus step
rules.push(SpannableNode::new(rule_func(helper_ident.clone(), args.clone(),
vec![ // A·x·y·p -> A A·x·y·p | ;
SpannableNode::new(Rhs {
weight: None,
chunks: vec![
SpannableNode::new(Self {
ebnf: None,
chunk: ChunkP::Unit(symbol.clone())
}, span.clone()),
Self::simple_ident_spanned_with_args(&helper_ident, span.clone(), args.clone())
]
}, span.clone()),
Rhs::empty_spanned(span.clone())
]
), span.to_owned()));
vec![ // A·x·y -> A A·x·y·p;
SpannableNode::new(Rhs {
weight: None,
chunks: vec![
SpannableNode::new(Self {
ebnf: None,
chunk: ChunkP::Unit(symbol)
}, span.clone()),
Self::simple_ident_spanned_with_args(&helper_ident, span.clone(), args.clone())
]
}, span.clone())
]
},
EbnfType::Many => { // *
vec![ // A·x·y -> A A·x·y | ;
SpannableNode::new(Rhs {
weight: None,
chunks: vec![
SpannableNode::new(Self {
ebnf: None,
chunk: ChunkP::Unit(symbol)
}, span.clone()),
Self::simple_ident_spanned_with_args(&ident, span.clone(), args.clone())
]
}, span.clone()),
Rhs::empty_spanned(span.clone())
]
},
EbnfType::Maybe => { // ?
vec![ // A·x·y -> A | ;
SpannableNode::new(Rhs {
weight: None,
chunks: vec![
SpannableNode::new(Self {
ebnf: None,
chunk: ChunkP::Unit(symbol)
}, span.clone())
]
}, span.clone()),
Rhs::empty_spanned(span.clone())
]
},
};
rules.push(SpannableNode::new(rule_func(ident, args, chunks), span.to_owned())); // S -> A·x·y;
}
/// Rewrite according to the EBNF operator.
///
/// If there is no EBNF operator, we do nothing.
/// If there is, we extract the chunk that it operates on and rewrite it as a new, separate rule. We do this recursively.
/// At the end, all EBNF operators are replaced by references to the new rules and we return a list of new rules to add to the grammar.
pub(crate) fn rewrite(
&mut self,
ident: String, // The identifier for the new rule.
span: &Span, // The span information for this rule
rule_func: RuleConstructor, // The constructor for the type of rule
depth: usize, // Recursive depth
state: &mut FirstPassState
) -> FirstPassResult<(Vec<SpannableNode<Rule>>, ReqAttributes)> {
let mut rules = Vec::new();
let required_args = if let Some(e) = std::mem::take(&mut self.ebnf) { // There is an ebnf operator
match self {
Self { chunk: ChunkP::Unit(u), ..} => { // This is a singular chunk
Self::rewrite_unit_ebnf(u, &e, rule_func, depth, ident, span, &mut rules)
},
Self { chunk: ChunkP::Group(g), ..} => { // This is a group of chunks in ()
let real_g = std::mem::take(g);
self.rewrite_group(real_g, Some(&e), rule_func, depth, ident, span, state, &mut rules)?
}
}
} else { // There is no ebnf operator
match self {
Self { chunk: ChunkP::Unit(u), ..} => {
Self::rewrite_unit_no_ebnf(u, depth)
},
Self { chunk: ChunkP::Group(g), ..} => {
let real_g = std::mem::take(g);
self.rewrite_group(real_g, None, rule_func, depth, ident, span, state, &mut rules)?
}
}
};
Ok((rules, required_args))
}
/// Rewrite a singular chunk with an EBNF operator (I.E. `S -> A?`)
fn rewrite_unit_ebnf(u: &mut SpannableNode<Symbol>, e: &EbnfType, rule_func: RuleConstructor, depth: usize, ident: String, span: &Span, rules: &mut Vec<SpannableNode<Rule>>) -> ReqAttributes {
let calling_args = u.to_inner().calling_args(); // Get the calling args for this symbol
let req_args = u.get_req_attributes(); // Get all the required attributes for this symbol
// We modify the rule in place by taking out the symbol (in this case `A`) and replacing
// it with that of the new helper rule that does the EBNF step.
let mut yanked = std::mem::replace(u,
SpannableNode::new(
Symbol::NonTerminal(
SpannableNode::new(Ident::Unknown(ident.clone()), span.clone()),
CallingArgs::new(),
),
span.clone()
)
);
let symbol_args = yanked.to_inner_mut().rewrite().into_iter().collect();
if let Symbol::NonTerminal(_, v) = u.to_inner_mut() { // We get a reference to the vector of calling arguments for the new symbol (which is always a NT).
let main_args = if depth > 0 { // Unless this is our first pass
let mut as_synth = CallingArgs::with_capacity(calling_args.len()); // Convert all the calling arguments to be synthesized attributes.
for i in &calling_args {
let s = i.to_inner().extract_string();
as_synth.push(SpannableNode::new(Ident::Synth(s.to_string()), i.span()));
}
as_synth
} else {
calling_args // Otherwise, just use our old calling args
};
let _ = std::mem::replace(v, main_args); // And insert them into the vector.
}
Self::rewrite_ebnf(e, ident, symbol_args, yanked, span, rule_func, rules); // Construct the helper rules
req_args // Return all the attributes that are required for the original symbol.
}
fn rewrite_unit_no_ebnf(u: &mut SpannableNode<Symbol>, depth: usize) -> ReqAttributes {
let req = u.get_req_attributes(); // Simply get all the require attributes for this symbol
if depth > 0 {
u.to_inner_mut().rewrite(); // If this is a recursive call, rewrite calling attributes to synthesized.
}
req
}
#[allow(clippy::too_many_arguments)]
fn rewrite_group(
&mut self,
g: Vec<SpannableNode<Self>>,
e: Option<&EbnfType>, // Optionally, the type of Ebnf operator associated with this group
rule_func: RuleConstructor,
depth: usize,
ident: String,
span: &Span,
state: &mut FirstPassState,
rules: &mut Vec<SpannableNode<Rule>>
) -> FirstPassResult<ReqAttributes> {
let new_ident = if e.is_some() { // We have an ebnf operator, construct a new ident
format!("{ident}··{depth}")
} else {
ident.clone()
};
let mut new_rule = SpannableNode::new( // Create a new rule which is like this grouped chunk, but has instead the group as it's chunks.
rule_func(
new_ident.clone(),
CallingArgs::new(), // Should be as synthesized
vec![
Rhs { weight: None, chunks: g }.into_spanned(span.clone())
]
),
span.clone()
);
let (new_rules, req_args) = new_rule.rewrite(depth+1, state)?; // Do a recursive rewrite of this new rule.
let mut as_synth = CallingArgs::with_capacity(req_args.len()); // Create a list of all the required attributes for this new rule, but synthesized.
for i in &req_args {
let s = i.to_inner().extract_string();
as_synth.push(SpannableNode::new(Ident::Synth(s.to_string()), i.span()));
}
match new_rule.to_inner_mut() {
Rule::Analytic(_, v, _) | Rule::Generate(_, v, _) => {
*v = as_synth.clone();
},
_ => {}
}
let symbol_args = if depth > 0 { // If this is a recusrive call, the args for the symbol should be synthesized
as_synth.clone()
} else {
req_args.iter().cloned().collect() // Otherwise they should be as the original.
};
self.chunk = ChunkP::Unit(Symbol::simple_ident_spanned_with_args(&ident, span.clone(), symbol_args)); // Should be as expected
if let Some(eb) = e {
let symbol = Symbol::simple_ident_spanned_with_args(&new_ident, span.clone(), as_synth.clone()); // Should be as synthesized
Self::rewrite_ebnf(eb, ident, as_synth, symbol, span, rule_func, rules); // Should be as synthesized
}
rules.push(new_rule);
rules.extend(new_rules);
Ok(req_args)
}
/// Check if this chunk is a terminal
// pub(crate) fn is_terminal(&self) -> bool {
// match &self.chunk {
// ChunkP::Unit(s) => s.node.is_terminal(),
// ChunkP::Group(_) => false,
// }
// }
/// Automatically create a `Chunk` that is just a terminal. See [`Symbol::simple_terminal`].
#[must_use]
pub fn simple_terminal(term: &str) -> Self {
Self {
ebnf: None,
chunk: ChunkP::Unit(Symbol::simple_terminal(term).into())
}
}
/// Automatically create a `Chunk` that is just an ident. See [`Symbol::simple_ident`].
#[must_use]
pub fn simple_ident(ident: &str) -> Self {
Self {
ebnf: None,
chunk: ChunkP::Unit(Symbol::simple_ident(ident).into())
}
}
/// Automatically create a spanned `Chunk` that is just an ident.
// pub(crate) fn simple_ident_spanned(ident: &str, span: Span) -> SpannableNode<Self> {
// Self::simple_ident_spanned_with_args(ident, span, Vec::new())
// }
pub(crate) fn simple_ident_spanned_with_args(ident: &str, span: Span, args: Vec<SpannableNode<Ident>>) -> SpannableNode<Self> {
SpannableNode::new(Self {
ebnf: None,
chunk: ChunkP::Unit(Symbol::simple_ident_spanned_with_args(ident, span.clone(), args))
}, span)
}
/// Automatically create an empty chunk.
#[must_use]
pub fn empty() -> Self {
Self {
ebnf: None,
chunk: ChunkP::Unit(Symbol::Epsilon.into())
}
}
/// Automatically create a spanned empty chunk.
pub(crate) fn empty_spanned(span: Span) -> SpannableNode<Self> {
SpannableNode::new(
Self {
ebnf: None,
chunk: ChunkP::Unit(SpannableNode::new(Symbol::Epsilon, span.clone()))
}, span
)
}
/// Extract all the symbols that are in this chunk.
#[must_use]
pub fn extract_symbols(self) -> Vec<SpannableNode<Symbol>> {
match self {
Self {chunk: ChunkP::Unit(s), ..} => vec![s],
Self {chunk: ChunkP::Group(g), ..} => {
let mut ret = Vec::with_capacity(g.len());
for chunk in g {
ret.extend(chunk.into_inner().extract_symbols());
}
ret
}
}
}
}
impl Parse for Chunk {
fn parse(lexer: &mut LexerBridge) -> ParseResult<Self> {
let chunk = match lexer.peek_result()? {
Tokens::ProductionToken(Productions::LPar) => {
let mut ret = Vec::new();
lexer.next();
while lexer.peek_result()? != &Tokens::ProductionToken(Productions::RPar) {
ret.push(SpannableNode::parse(lexer)?);
}
lexer.next();
ChunkP::Group(ret)
},
Tokens::ProductionToken(Productions::Semi) => { // Empty rule
return Ok(Self::empty())
}
_ => {
ChunkP::Unit(SpannableNode::parse(lexer)?)
}
};
if let Tokens::ProductionToken(Productions::Ebnf(_)) = lexer.peek_result()? {
if let Tokens::ProductionToken(Productions::Ebnf(x)) = lexer.next_result()? {
Ok(Self {chunk, ebnf: Some(x)})
} else {
Err(WagParseError::Fatal((lexer.span(), "Something went terribly wrong. Unwrapped non-ebnf when should have unwrapped ebnf".to_string())))
}
} else {
Ok(Self {chunk, ebnf: None})
}
}
}
impl GetReqAttributes for Chunk {
fn get_req_attributes(&self) -> ReqAttributes {
match &self.chunk {
ChunkP::Unit(s) => s.get_req_attributes(),
ChunkP::Group(g) => {
let mut req = ReqAttributes::new();
for c in g {
req.extend(c.get_req_attributes());
}
req
},
}
}
}
use itertools::Itertools;
impl Display for Chunk {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
if let Some(ebnf) = &self.ebnf {
write!(f, "{}{ebnf}", self.chunk)
} else {
write!(f, "{}", self.chunk)
}
}
}
impl Display for ChunkP {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::Unit(s) => write!(f, "{s}"),
Self::Group(g) => write!(f, "({})", g.iter().join(" ")),
}
}
}