1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
#[macro_use]
/// The full WAG tree.
pub mod wag;
/// An assignment.
pub mod assignment;
/// An atom.
pub mod atom;
/// A chunk.
pub mod chunk;
/// A comparison.
pub mod comp;
/// `||`
pub mod conjunct;
/// `&&`
pub mod disjunct;
/// An expression.
pub mod expression;
/// `**`
pub mod factor;
/// Helper methods.
pub mod helpers;
/// `!`
pub mod inverse;
/// Metadata for the WAG.
pub mod metadata;
/// The right-hand-side of a rule.
pub mod rhs;
/// A rule.
pub mod rule;
/// `+` or `-`.
pub mod sum;
/// An individual symbol.
pub mod symbol;
/// `*` or `/`.
pub mod term;
/// A terminal.
pub mod terminal;
mod ident;

use derivative::Derivative;
use std::{error::Error, fmt::Display, write};
use self::wag::Wag;
use crate::firstpass::{WagCheckError, Rewrite};
use crate::SpannableNode;

use ordered_float::FloatIsNan;
use wagon_ident::Ident;
use wagon_utils::{Peek, comma_separated_with_or, string_vec, ResultNext, ResultPeek, Span, Spannable, ErrorReport};
use wagon_lexer::{LexerBridge, Tokens, LexingError};

type CallingArgs = Vec<SpannableNode<Ident>>;

/// The main parser struct.
///
/// Uses a [`LexerBridge`] internally.
/// # Example
/// ```
/// use wagon_parser::parser::Parser;
/// 
/// let s = "S -> A;";
/// let mut parser = Parser::new(s);
/// assert!(parser.parse().is_ok())
/// ```
pub struct Parser<'source> {
	lexer: LexerBridge<'source>
}

impl<'source> Parser<'source> {
	/// Given an input string, construct a parser.
	#[must_use] pub fn new(data: &'source str) -> Self {
		Self {
			lexer: LexerBridge::new(data)
		}
	}

	/// Start parsing and return a result.
	///
	/// # Errors
	/// Returns a [`WagParseError`] if any error occurs during parsing.
	pub fn parse(&mut self) -> ParseResult<Wag> {
		Wag::parse(&mut self.lexer)
	}
}

/// Any parse will either return the node we are trying to parse, or a [`WagParseError`].
pub type ParseResult<T> = Result<T, WagParseError>;

#[derive(Derivative, Debug)]
#[derivative(PartialEq)]
/// Any of the various errors that can occur during parsing.
pub enum WagParseError {
	/// An unexpected character was encountered.
	Unexpected {
		/// The span info for this character.
		span: Span,
		/// The token we found.
		offender: Tokens,
		/// String representations for the tokens we expected to see.
		expected: Vec<String>
	},
	/// Something horrible happened that we do not have a specific error for.
	Fatal((Span, String)),
	/// A wrapper around [`WagCheckError`].
	CheckError(WagCheckError),
	/// A wrapper around [`LexingError`].
	LexError(LexingError),
	/// Expected a float but got a NaN
	FloatError(FloatIsNan, Span),
	/// Non-valid regex
	RegexError(#[derivative(PartialEq="ignore")] Box<regex_automata::dfa::dense::BuildError>, Span, String), // Regex errors are big so we're allocating it on the heap
}

impl From<WagCheckError> for WagParseError {
    fn from(value: WagCheckError) -> Self {
        Self::CheckError(value)
    }
}

impl From<LexingError> for WagParseError {
	fn from(value: LexingError) -> Self {
		Self::LexError(value)
	}
}

impl Error for WagParseError {
    fn source(&self) -> Option<&(dyn Error + 'static)> {
        match self {
            Self::Fatal(_) | Self::Unexpected { .. } => None,
            Self::CheckError(e) => Some(e),
            Self::LexError(e) => Some(e),
            Self::FloatError(e, _) => Some(e),
            Self::RegexError(e, _, _) => Some(&**e),
        }
    }
}

impl Display for WagParseError {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
    	let (head, msg) = self.msg();
    	write!(f, "{head}: {msg}")
    }
}

impl ErrorReport for WagParseError {
	fn span(self) -> Span {
		match self {
		    Self::CheckError(check) => check.span(),
		    Self::LexError(lex) => lex.span(),
		    Self::FloatError(_, span) | Self::Fatal((span, _)) | Self::Unexpected { span, .. } => span,
		    Self::RegexError(e, span, _) => {
		    	match e.source() {
		    		Some(e) => match e.source() { // NFA Build Error
		    			Some(e) => { // Syntax Error
		    				let e_span = match e.downcast_ref() {
		    					Some(regex_syntax::Error::Parse(e)) => e.span(),
		    					Some(regex_syntax::Error::Translate(e)) => e.span(),
		    					_ => return span
		    				};
					    	let start = span.start + e_span.start.offset;
					    	let end = span.start + e_span.end.offset;
					    	Span { start, end }
		    			},
		    			None => span
		    		},
		    		None => span
		    	}
		    }
		}
	}

	fn msg(&self) -> (String, String) {
		match self {
		    Self::Unexpected { span, offender, expected } => ("Unexpected Token".to_string(), 
		    	format!("Encountered token {:?} at position {:?}. Expected {:#?}", offender, span, comma_separated_with_or(expected))),
	        Self::Fatal((_, msg)) => ("Fatal Exception".to_string(), msg.to_string()),
	        Self::CheckError(err) => err.msg(),
    		Self::LexError(lex) => ("Lexing Error".to_string(), lex.to_string()),
    		Self::FloatError(e, _) => ("Error converting floating point".to_string(), e.to_string()),
    		Self::RegexError(e, _, s) => ("Regex Build Error:".to_string(), format!("Failed building pattern {s}: {e}")),
		}
	}
}

/// The main trait for parsing.
///
/// Any node that can be parsed must implement this trait.
pub trait Parse {

	/// Given a lexer, try to parse a valid instance of this node.
	///
	/// # Errors
	/// Should return a [`WagParseError`] if the parsing fails.
	fn parse(lexer: &mut LexerBridge) -> ParseResult<Self> where Self: Sized;

	/// Parse multiple instances of this node, separated by a [`Tokens`].
	///
	/// # Errors
	/// Should return a [`WagParseError`] if the parsing fails.
	fn parse_sep(lexer: &mut LexerBridge, join: Tokens) -> ParseResult<Vec<Self>> where Self: Sized {
		let mut res = Vec::new();
		res.push(Self::parse(lexer)?);
		while lexer.next_if(|x| x.as_ref() == Ok(&join)).is_some() {
			res.push(Self::parse(lexer)?);
		}
		Ok(res)
	}

	/// Parse multiple instances of this node, separated by a [`Tokens`] end ended by a (possibly different) [`Tokens`].
	///
	/// # Errors
	/// Should return a [`WagParseError`] if the parsing fails.
	fn parse_sep_end(lexer: &mut LexerBridge, join: Tokens, end: Tokens) -> ParseResult<Vec<Self>> where Self: Sized {
		let mut res = Vec::new();
		res.push(Self::parse(lexer)?);
		let mut done = false;
		while !done {
			if lexer.next_if(|x| x.as_ref() == Ok(&join)).is_some() {
				if lexer.next_if(|x| x.as_ref() == Ok(&end)).is_some() {
					done = true;
				} else {
					res.push(Self::parse(lexer)?);
				}
			} else if lexer.next_if(|x| x.as_ref() == Ok(&end)).is_some() {
				done = true;
			} else {
				return Err(WagParseError::Unexpected{ offender: lexer.next_result()?, expected: string_vec![join, end], span: lexer.span()})
			}
		}
		Ok(res)
	}
}

/// Optionally parse the node.
///
/// Sometimes, we want to try parsing a node, but don't care if we fail in some ways, but do care in others. 
/// In that case, we should implement this trait and return `Ok(None)` if the failure doesn't matter and `Err` if it does.
trait ParseOption {

	fn parse_option(lexer: &mut LexerBridge) -> ParseResult<Option<Self>> where Self: Sized;
}

#[cfg(test)]
mod tests {

    use wagon_lexer::math::Math;
	use std::collections::BTreeMap;

    use wagon_lexer::productions::EbnfType;
	
	use super::Parse;
	use super::LexerBridge;
	use super::sum::SumP;
	use ordered_float::NotNan;
	use wagon_macros::unspanned_tree;
	
	use super::assignment::Assignment;
    use super::atom::Atom;
    use super::comp::Comparison;
    use super::conjunct::Conjunct;
    use super::disjunct::Disjunct;
    use super::expression::Expression;
    use super::factor::Factor;
    use super::inverse::Inverse;
    use super::term::Term;
    use super::{Parser, Wag, metadata::Metadata, rule::Rule, rhs::Rhs, chunk::Chunk, symbol::Symbol, terminal::Terminal, sum::Sum};
    use wagon_lexer::Tokens;
    use wagon_ident::Ident;
    use super::chunk::ChunkP;
    use super::string_vec;

    use super::Span;
    use pretty_assertions::assert_eq;

    #[test]
    #[allow(clippy::too_many_lines)]
	fn test_example_wag() {
		let input = r#"
		include activities::other;
		type: "conversational";
		====================

		start -> setup activity* 'stop'; /* a comment */
		setup -> greet? getname | ;
		greet -> ('hello' {hello = true;})+ | "good morning";
		greet => 'greetings human!' 
		| [0.3] "What is your name? ";
		getname -> ;
		"#;
		let mut lexer = LexerBridge::new(input);
		let output = Wag::parse(&mut lexer);
		let expected = unspanned_tree!(Wag { 
			metadata: Metadata {
				includes: vec!["activities::other".to_string()],
				mappings: BTreeMap::from([("type".to_string(), Atom::LitString("conversational".to_string()))])
			}, 
			grammar: vec![
				Rule::Analytic("start".to_string(), Vec::new(), vec![
					Rhs { 
						weight: None,
						chunks: vec![
							Chunk { 
								chunk: ChunkP::Unit(Symbol::simple_ident("setup")),
								ebnf: None 
							},
							Chunk {
								chunk: ChunkP::Unit(Symbol::simple_ident("activity")),
								ebnf: Some(EbnfType::Many)
							},
							Chunk {
								chunk: ChunkP::Unit(Symbol::simple_terminal("stop")),
								ebnf: None
							}
						]
					}
				]),
				Rule::Analytic("setup".to_string(), Vec::new(), vec![
					Rhs {
						weight: None,
						chunks: vec![
							Chunk {
								chunk: ChunkP::Unit(Symbol::simple_ident("greet")),
								ebnf: Some(EbnfType::Maybe)
							},
							Chunk {
								chunk: ChunkP::Unit(Symbol::simple_ident("getname")),
								ebnf: None
							}
						]
					},
					Rhs::empty()
				]),
				Rule::Analytic("greet".to_string(), Vec::new(), vec![
					Rhs {
						weight: None,
						chunks: vec![
							Chunk {
								chunk: ChunkP::Group(vec![
									Chunk { chunk: ChunkP::Unit(Symbol::Terminal(Terminal::LitString("hello".to_string()))), ebnf: None },
									Chunk { chunk: ChunkP::Unit(Symbol::Assignment(vec![
										Assignment { 
											ident: Ident::Unknown("hello".to_string()), 
											expr: Expression::Disjunct(
												Disjunct(vec![
													Conjunct(vec![
														Inverse::Comparison(
															Comparison {
																sum: Sum {
																	left: Term { 
																		left: Factor::Primary(
																			Atom::LitBool(true)
																		), 
																		cont: None 
																	},
																	cont: None
																},
																comp: None
															}
														)
													])
												])
											)
										}
									])), ebnf: None
									}
								]),
								ebnf: Some(EbnfType::Some)
							}
						]
					},
					Rhs {
						weight: None,
						chunks: vec![
							Chunk {
								chunk: ChunkP::Unit(Symbol::Terminal(Terminal::LitString("good morning".to_string()))),
								ebnf: None
							}
						]
					}
				]),
				Rule::Generate("greet".to_string(), Vec::new(), vec![
					Rhs {
						weight: None,
						chunks: vec![
							Chunk {
								chunk: ChunkP::Unit(Symbol::Terminal(Terminal::LitString("greetings human!".to_string()))),
								ebnf: None
							}
						]
					},
					Rhs {
						weight: Some(
							Expression::Disjunct(
								Disjunct(vec![
									Conjunct(vec![
										Inverse::Comparison(
											Comparison {
												sum: Sum {
													left: Term { 
														left: Factor::Primary(
															Atom::LitFloat(NotNan::new(0.3).unwrap())
														), 
														cont: None 
													},
													cont: None
												},
												comp: None
											}
										)
									])
								])
							)
						),
						chunks: vec![
							Chunk {
								chunk: ChunkP::Unit(Symbol::Terminal(Terminal::LitString("What is your name? ".to_string()))),
								ebnf: None
							}
						]
					}
				]),
				Rule::Analytic("getname".to_string(), Vec::new(), vec![
					Rhs::empty()
				])
			]
		});
		assert_eq!(Ok(expected), output);
	}

	#[test]
	#[allow(clippy::too_many_lines)]
	fn test_example_wag2() {
		let input = r"
		S -> {$x = 0; $y = 0;} X<$x, $y>;
		X<*y, &x> -> 'a' {*y = *y + 1; &x = &x + 1;} B;
		B -> 'b';
		";
		let mut lexer = LexerBridge::new(input);
		let output = Wag::parse(&mut lexer);
		let expected = unspanned_tree!(Wag {
			metadata: Metadata { includes: vec![], mappings: BTreeMap::new() },
			grammar: vec![
				Rule::Analytic("S".to_string(), Vec::new(), vec![
					Rhs {
						weight: None,
						chunks: vec![
							Chunk { 
								chunk: ChunkP::Unit(Symbol::Assignment(vec![
									Assignment { 
										ident: Ident::Local("x".to_string()), 
										expr: Expression::Disjunct(
											Disjunct(vec![
												Conjunct(vec![
													Inverse::Comparison(
														Comparison {
															sum: Sum {
																left: Term { 
																	left: Factor::Primary(
																		Atom::LitNum(0)
																	), 
																	cont: None 
																},
																cont: None
															},
															comp: None
														}
													)
												])
											])
										)
									},
									Assignment { 
										ident: Ident::Local("y".to_string()), 
										expr: Expression::Disjunct(
											Disjunct(vec![
												Conjunct(vec![
													Inverse::Comparison(
														Comparison {
															sum: Sum {
																left: Term { 
																	left: Factor::Primary(
																		Atom::LitNum(0)
																	), 
																	cont: None 
																},
																cont: None
															},
															comp: None
														}
													)
												])
											])
										)
									}
								])),
								ebnf: None, 
							},
							Chunk {
								chunk: ChunkP::Unit(Symbol::NonTerminal(Ident::Unknown("X".to_string()), vec![Ident::Local("x".to_string()), Ident::Local("y".to_string())])),
								ebnf: None,
							}
						]
					}
				]),
				Rule::Analytic("X".to_string(), vec![Ident::Inherit("y".to_string()), Ident::Synth("x".to_string())], vec![
					Rhs { 
						weight: None,
						chunks: vec![
							Chunk::simple_terminal("a"),
							Chunk { 
								chunk: ChunkP::Unit(Symbol::Assignment(vec![
									Assignment { 
										ident: Ident::Inherit("y".to_string()), 
										expr: Expression::Disjunct(
											Disjunct(vec![
												Conjunct(vec![
													Inverse::Comparison(
														Comparison {
															sum: Sum {
																left: Term { 
																	left: Factor::Primary(
																		Atom::Ident(Ident::Inherit("y".to_string()))
																	), 
																	cont: None 
																},
																cont: Some(SumP { 
																	op: crate::parser::sum::Op1::Add, 
																	right: Term {
																		left: Factor::Primary(
																			Atom::LitNum(1)
																		), 
																		cont: None 
																	}, 
																	cont: None
																})
															},
															comp: None
														}
													)
												])
											])
										)
									},
									Assignment { 
										ident: Ident::Synth("x".to_string()), 
										expr: Expression::Disjunct(
											Disjunct(vec![
												Conjunct(vec![
													Inverse::Comparison(
														Comparison {
															sum: Sum {
																left: Term { 
																	left: Factor::Primary(
																		Atom::Ident(Ident::Synth("x".to_string()))
																	), 
																	cont: None 
																},
																cont: Some(SumP { 
																	op: crate::parser::sum::Op1::Add, 
																	right: Term {
																		left: Factor::Primary(
																			Atom::LitNum(1)
																		), 
																		cont: None 
																	}, 
																	cont: None
																})
															},
															comp: None
														}
													)
												])
											])
										)
									}
								])),
								ebnf: None, 
							},
							Chunk::simple_ident("B")
						] 
					}
				]),
				Rule::Analytic("B".to_string(), Vec::new(), vec![
					Rhs::simple_terminal("b")
				])
			]
		});
		assert_eq!(Ok(expected), output);
	}

	#[test]
	fn test_simple_empty_alt() {
		let input = "S -> 'a' | ;";
		let mut lexer = LexerBridge::new(input);
		let output = Wag::parse(&mut lexer);
		let expected = unspanned_tree!(Wag {
		    metadata: Metadata { includes: vec![], mappings: BTreeMap::new() },
		    grammar: vec![
		    	Rule::Analytic("S".to_string(), Vec::new(), vec![
		    		Rhs { 
		    			weight: None,
		    			chunks: vec![Chunk::simple_terminal("a")] 
		    		},
		    		Rhs::empty()
		    	])
		    ],
		});
		assert_eq!(Ok(expected), output);
	}

	#[test]
	fn test_parse_error() {
		let input = r#"
		include activities::other;
		type: conversational
		==========================

		start -> setup activity* 'stop'; /* a comment */
		setup -> greet? getname;
		greet -> ('hello' {hello = true;})+ | "good morning";
		greet => 'greetings human!' 
		| [0.3] "What is your name? ";
		"#;
		let mut parser = Parser::new(input);
		let output = parser.parse();
		let expected = Err(crate::parser::WagParseError::Unexpected { 
			span: Span {start: 55, end: 57}, 
			offender: Tokens::MathToken(Math::Eq), 
			expected: string_vec![
				Tokens::MathToken(Math::Semi)
			]
		});
		assert_eq!(expected, output);
	}

}